Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins.

نویسندگان

  • Catherine E Jessop
  • Rachel H Watkins
  • Jennifer J Simmons
  • Mohammed Tasab
  • Neil J Bulleid
چکیده

At least 17 members of the protein disulphide isomerase (PDI) family of oxidoreductases are present in the endoplasmic reticulum (ER) of mammalian cells. They are thought to catalyse disulphide formation to aid folding or to regulate protein function; however, little is known about their individual functions. Here, we show that some proteins that enter the ER are clients for single oxidoreductases, whereas others are clients for several PDI-like enzymes. We previously identified potential substrates for ERp57, and here identify substrates for ERp18 and ERp46. In addition, we analysed the specificity of substrates towards PDI, ERp72, ERp57, ERp46, ERp18 and P5. Strikingly, ERp18 shows specificity towards a component of the complement cascade, pentraxin-related protein PTX3, whereas ERp46 has specificity towards peroxiredoxin-4, a thioredoxin peroxidase. By contrast, most PDI family members react with Ero1alpha. Moreover, P5 forms a non-covalent complex with immunoglobulin heavy chain binding protein (BiP) and shows specificity towards BiP client proteins. These findings highlight cooperation between BiP and P5, and demonstrate that individual PDI family members recognise specific substrate proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Relationship between Protein Disulfide Isomerase Family Members during the Oxidative Folding of Human Secretory Proteins

To examine the relationship between protein disulfide isomerase family members within the mammalian endoplasmic reticulum, PDI, ERp57, ERp72, and P5 were depleted with high efficiency in human hepatoma cells, either singly or in combination. The impact was assessed on the oxidative folding of several well-characterized secretory proteins. We show that PDI plays a predominant role in oxidative f...

متن کامل

Oxidative protein folding in the mammalian endoplasmic reticulum.

Native disulphide bonds are essential for the structure and function of many membrane and secretory proteins. Disulphide bonds are formed, reduced and isomerized in the endoplasmic reticulum of mammalian cells by a family of oxidoreductases, which includes protein disulphide isomerase (PDI), ERp57, ERp72, P5 and PDIR. This review will discuss how these enzymes are maintained in either an oxidiz...

متن کامل

ERp57 is essential for efficient folding of glycoproteins sharing common structural domains.

ERp57 is a member of the protein disulphide isomerase family of oxidoreductases, which are involved in native disulphide bond formation in the endoplasmic reticulum of mammalian cells. This enzyme has been shown to be associated with both calnexin and calreticulin and, therefore, has been proposed to be a glycoprotein-specific oxidoreductase. Here, we identify endogenous substrates for ERp57 by...

متن کامل

The human protein disulphide isomerase family: substrate interactions and functional properties.

The process of disulphide bond formation in the endoplasmic reticulum of eukaryotic cells was one of the first mechanisms of catalysed protein folding to be discovered. Protein disulphide isomerase (PDI) is now known to catalyse all of the reactions that are involved in native disulphide bond formation, but despite more than 40 years of study, its mechanism of action is still not fully understo...

متن کامل

Functional analysis of the CXXC motif using phage antibodies that cross-react with protein disulphide-isomerase family proteins.

Polyclonal antibodies that had been raised against particular PDI (protein disulphide-isomerase) family proteins did not cross-react with other PDI family proteins. To evade immune tolerance to the important self-motif Cys-Xaa-Xaa-Cys, which is present in PDI family proteins, we used the phage display library [established by Griffiths, Williams, Hartley, Tomlinson, Waterhouse, Crosby, Konterman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 122 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2009